[image: image1.png]

University of the Gambia

CPS101 – Computer Programming I (Java) -- Mr. Lie Njie
16 May 2006

Handout 7:
the Vector Class and Type Casting
Arrays are very useful, however, there are a number of tasks that you will generally want to perform on them that make the traditional primitive array structures very difficult to use. For example, you will often find that you want to grow or shrink an array, which is not allowed. Here is what the JDK says about Vector:
The Vector class implements a growable array of objects. Like an array, it contains components that can be accessed using an integer index. However, the size of a Vector can grow or shrink as needed to accommodate adding and removing items after the Vector has been created.
Thus, programmers who want to use arrays will often instead use a different data structure, such as an instance of the Vector class (or the ArrayList class). Look in the JDK documentation for full details of these classes, including the methods they support.

Briefly, the Vector class implements an ordered collection -- essentially an array -- of objects that can grow or shrink as necessary. ("Ordered collection" means that the Vector holds the elements in the same order you insert them in, but it does NOT sort the elements.)
Before you can use any imported classes, you must tell Java that you wish to use it:

import java.util.Vector; // place this BEFORE the class definition
Since the Vector holds a collection of OBJECTs, NOT primitives you cannot say:

Vector myVector = new Vector();

myVector.add(123);

int myInt = myVector.get(0);//ERROR: type Mismatch: Object vs. int
So, to use Vectors correctly, you must store everything as an object. Luckily, there are classes for each of the primitive data types: Integer for int, Double for double, etc.. e.g.:

Vector myVector = new Vector();

Integer myInteger = new Integer(123);

myVector.add(myInteger); // Adds an Integer to the Vector

WARNING: this makes it a bit harder to retrieve elements from a Vector, since the Vector only knows it has elements of type Object. To explicitly tell Java what kind of data you are pulling out of the Vector, you must convert the type, or TYPE CAST, the object like this:

Vector myVector = new Vector();

Integer myInteger = (Integer)myVector.elementAt(5); // like: a[5]

TYPE CONVERSIONS: Java allows you to use the () operator to covert types. WARNING: This is dangerous, and should generally be avoided when possible.

Examples of using some useful vector functions:

Vector myVector = new Vector(); // Create a new instance of Vector
myVector.add(new Integer(345)); // Add an Integer instance to the Vector
myVector.add(new Integer(123)); // Add another element to the Vector
int intTmp = (int)myVector.elementAt(0); // Get and Cast 1st element as int

int intTmp2 = (int)myVector.get(1); // get() works like elementAt()

System.out.println(myVector.size()); // Prints the number of elements

myVector.set(0, new Integer(678)); // Changes the first element
myVector.remove(1); // Deletes the second element from the Vector
System.out.println(myVector.toString()); // Prints a string representation

Vector myCopy = myVector.clone(); // Creates a duplicate of the Vector
