[image: image1.png]University of the Gambia

MTH 305 – Introduction to Programming

November 2006

Handout 1:
Java Basics

This documents the syntax of Java programs by starting at the very lowest level of Java syntax and building from there, covering increasingly higher orders of structure. It covers:

· The characters used to write Java programs and the encoding of those characters. (example 'a', '1', ':', '+')
· Literal values, identifiers, and other tokens that comprise a Java program. (ex: 1, "the", '1', true)
· The data types that Java can manipulate. (ex: int, char)
· The operators used in Java to group individual tokens into larger expressions. (ex: +, -, ==)
· Statements, which group expressions and other statements to form logical chunks of Java code.

· Methods (also called functions, procedures, or subroutines), which are named collections of Java statements that can be invoked by other Java code.

· Classes, which are collections of methods and fields. Classes are the central program element in Java and form the basis for object-oriented programming.

· Packages, which are collections of related classes.

· Java programs, which consist of one or more interacting classes that may be drawn from one or more packages.

1. Comments

Comments are ignored by the program. They are a useful way to include notes to yourself and other programmers about what the code is doing.

There are two types of comments: "//" and "/* */"

int i = 0; // Initialize the loop variable

/* Some Comment */

/*

 * First, establish a connection to the server.

 * If the connection attempt fails, quit right away.

 */

2. Literals

Literals are values that appear directly in Java source code. They include integer and floating-point numbers, characters within single quotes, strings of characters within double quotes, and the reserved words true, false and null. For example, the following are all literals:

1 1.0 '1' "one" true false null

We'll talk about Strings later…
3. Punctuation

Java also uses a number of punctuation characters as tokens. The Java Language Specification divides these characters (somewhat arbitrarily) into two categories, separators and operators. Separators are:

() { } [] < > : ; , . @

4. Primitive Data Types

	4.1.1.1.1 Table 2-1. Java primitive data types

	Type
	Contains
	Default
	Size
	Range

	boolean
	true or false
	false
	1 bit
	NA

	char
	Unicode character
	\u0000
	16 bits
	\u0000 to \uFFFF

	byte
	Signed integer
	0
	8 bits
	-128 to 127

	short
	Signed integer
	0
	16 bits
	-32768 to 32767

	int
	Signed integer
	0
	32 bits
	-2147483648 to 2147483647

	long
	Signed integer
	0
	64 bits
	-9223372036854775808 to 9223372036854775807

	float
	IEEE 754 floating point
	0.0
	32 bits
	1.4E-45 to 3.4028235E+38

	double
	IEEE 754 floating point
	0.0
	64 bits
	4.9E-324 to 1.7976931348623157E+308

5. Variables

In Java, every variable has a type. You declare a variable by placing the type first, followed by the name of the variable. Here are some examples:

double salary;

int vacationDays;

long earthPopulation;

char yesChar;

boolean done;

Notice the semicolon at the end of each declaration. The semicolon is necessary because a declaration is a complete Java statement.

The rules for a variable name are as follows:

A variable name must begin with a letter, and must be a sequence of letters or digits. Note that the terms "letter" and "digit" are much broader in Java than in most languages. A letter is defined as 'A'–'Z', 'a'–'z', '_', or any Unicode character that denotes a letter in a language. For example, German users can use umlauts such as ' ä' in variable names; Greek speakers could use a . Similarly, digits are '0'–'9' and any Unicode characters that denote a digit in a language. Symbols like '+' or '©' cannot be used inside variable names, nor can spaces. All characters in the name of a variable are significant and case is also significant. The length of a variable name is essentially unlimited.

6. Assignments and Initializations

After you declare a variable, you must explicitly initialize it by means of an assignment statement—you can never use the values of uninitialized variables. You assign to a previously declared variable using the variable name on the left, an equal sign (=), and then some Java expression that has an appropriate value on the right.

int vacationDays; // this is a declaration

vacationDays = 12; // this is an assignment

Here's an example of an assignment to a character variable:

char yesChar;

yesChar = 'Y';

One nice feature of Java is the ability to both declare and initialize a variable on the same line. For example:

int vacationDays = 12; // this is an initialization

Finally, in Java you can put declarations anywhere in your code. For example, the following is valid code in Java:

double salary = 65000.0;

System.out.println(salary);

int vacationDays = 12; // ok to declare variable here

Of course, you cannot declare two variables with the same name in the same scope.

7. Operators

Operators perform some action on data.

+ - * / % & | ^ << >> >>>

+= -= *= /= %= &= |= ^= <<= >>= >>>=

= = = != < <= > >=

! ~ && || ++ -- ? :

	7.1.1.1.1 Table 2-4. Java operators

	P
	A
	Operator
	Operand type(s)
	Operation performed

	15
	L
	.
	object, member
	object member access

	
	
	[]
	array, int
	array element access

	
	
	(args)
	method, arglist
	method invocation

	
	
	++ , --
	variable
	post-increment, decrement

	14
	R
	++, --
	variable
	pre-increment, decrement

	
	
	+ , -
	number
	unary plus, unary minus

	
	
	~
	integer
	bitwise complement

	
	
	!
	boolean
	boolean NOT

	13
	R
	new
	class, arglist
	object creation

	
	
	(type)
	type, any
	cast (type conversion)

	12
	L
	* , /, %
	number, number
	multiplication, division, remainder

	11
	L
	+ , -
	number, number
	addition, subtraction

	
	
	+
	string, any
	string concatenation

	10
	L
	<<
	integer, integer
	left shift

	
	
	>>
	integer, integer
	right shift with sign extension

	
	
	>>>
	integer, integer
	right shift with zero extension

	9
	L
	< , <=
	number, number
	less than, less than or equal

	
	
	> , >=
	number, number
	greater than, greater than or equal

	
	
	instanceof
	reference, type
	type comparison

	8
	L
	= =
	primitive, primitive
	equal (have identical values)

	
	
	!=
	primitive, primitive
	not equal (have different values)

	
	
	= =
	reference, reference
	equal (refer to same object)

	
	
	!=
	reference, reference
	not equal (refer to different objects)

	7
	L
	&
	integer, integer
	bitwise AND

	
	
	&
	boolean, boolean
	boolean AND

	6
	L
	^
	integer, integer
	bitwise XOR

	
	
	^
	boolean, boolean
	boolean XOR

	5
	L
	|
	integer, integer
	bitwise OR

	
	
	|
	boolean, boolean
	boolean OR

	4
	L
	&&
	boolean, boolean
	conditional AND

	3
	L
	||
	boolean, boolean
	conditional OR

	2
	R
	?:
	boolean, any
	conditional (ternary) operator

	1
	R
	=
	variable, any
	assignment

	
	
	*= , /=, %=,
	variable, any
	assignment with operation

	
	
	+= , -=, <<=,
	
	

	
	
	>>= , >>>= ,
	
	

	
	
	&=, ^= , |=
	
	

The usual arithmetic operators + – * / are used in Java for addition, subtraction, multiplication, and division. The / operator denotes integer division if both arguments are integers, and floating-point division otherwise. Integer remainder (that is, the mod function) is denoted by %. For example, 15 / 2 is 7, 15 % 2 is 1, and 15.0 / 2 is 7.5.

Note that integer division by 0 raises an exception, whereas floating-point division by 0 yields an infinite or NaN result.

You can use the arithmetic operators in your variable initializations:

int n = 5;

int a = 2 * n; // a is 10

There is a convenient shortcut for using binary arithmetic operators in an assignment. For example,

x += 4;

is equivalent to

x = x + 4;

(In general, place the operator to the left of the = sign, such as *= or %=.)

7.2 Increment and Decrement Operators

Programmers, of course, know that one of the most common operations with a numeric variable is to add or subtract 1. Java, following in the footsteps of C and C++, has both increment and decrement operators: x++ adds 1 to the current value of the variable x, and x-- subtracts 1 from it. For example, the code

int n = 12;

n++;

changes n to 13. Because these operators change the value of a variable, they cannot be applied to numbers themselves. For example, 4++ is not a legal statement.

There are actually two forms of these operators; you have seen the "postfix" form of the operator that is placed after the operand. There is also a prefix form, ++n. Both change the value of the variable by 1. The difference between the two only appears when they are used inside expressions. The prefix form does the addition first; the postfix form evaluates to the old value of the variable.

int m = 7;

int n = 7;

int a = 2 * ++m; // now a is 16, m is 8

int b = 2 * n++; // now b is 14, n is 8

We recommend against using ++ inside other expressions as this often leads to confusing code and annoying bugs.

(Of course, while it is true that the ++ operator gives the C++ language its name, it also led to the first joke about the language. C++ haters point out that even the name of the language contains a bug: "After all, it should really be called ++C, since we only want to use a language after it has been improved.")

7.3 Relational and boolean Operators

Java has the full complement of relational operators. To test for equality you use a double equal sign, ==. For example, the value of

3 == 7

is false.

Use a != for inequality. For example, the value of

3 != 7

is true.

Finally, you have the usual < (less than), > (greater than), <= (less than or equal), and >= (greater than or equal) operators.

Java, following C++, uses && for the logical "and" operator and || for the logical "or" operator. As you can easily remember from the != operator, the exclamation point ! is the logical negation operator. The && and || operators are evaluated in "short circuit" fashion. This means that when you have an expression like:

A && B

once the truth value of the expression A has been determined to be false, the value for the expression B is not calculated. For example, in the expression

x != 0 && 1 / x > x + y // no division by 0

the second part is never evaluated if x equals zero. Thus, 1 / x is not computed if x is zero, and no divide-by-zero error can occur.

Similarly, if A evaluates to be true, then the value of A || B is automatically true, without evaluating B.

Finally, Java supports the ternary ?: operator that is occasionally useful. The expression

condition ? e1 : e2
evaluates to e1 if the condition is true, to e2 otherwise. For example,

x < y ? x : y

gives the smaller of x and y.

8. Constants

In Java, you use the keyword final to denote a constant. For example,

public class Constants

{

 public static void main(String[] args)

 {

 final double CM_PER_INCH = 2.54;

 double paperWidth = 8.5;

 double paperHeight = 11;

 System.out.println("Paper size in centimeter: "

 + paperWidth * CM_PER_INCH + " by "

 + paperHeight * CM_PER_INCH);

 }

}

9. Primitive Type Conversions (Casting)
int i = 13;

byte b = i; // The compiler does not allow this

int i = 13;

byte b = (byte) i; // Force the int to be converted to a byte

i = (int) 13.456; // Force this double literal to the int 13

>> There are other options using the classes of Integer, Double, etc….

10. Precedence

a + b * c >>> (a + b) * c

>> Parenthesis forces precedence.

// Class cast combined with member access

((Integer) o).intValue();

// Assignment combined with comparison

while((line = in.readLine()) != null) { ... }

// Bitwise operators combined with comparison

if ((flags & (PUBLIC | PROTECTED)) != 0) { ... }

11. Expression Statements

As we saw earlier in the chapter, certain types of Java expressions have side effects. In other words, they do not simply evaluate to some value; they also change the program state in some way. Any expression with side effects can be used as a statement simply by following it with a semicolon. The legal types of expression statements are assignments, increments and decrements, method calls, and object creation. For example:

a = 1; // Assignment

x *= 2; // Assignment with operation

i++; // Post-increment

--c; // Pre-decrement

System.out.println("statement"); // Method invocation

12. Compound Statements

A compound statement is any number and kind of statements grouped together within curly braces. You can use a compound statement anywhere a statement is required by Java syntax:

for(int i = 0; i < 10; i++) {

 a[i]++; // Body of this loop is a compound statement.

 b[i]--; // It consists of two expression statements

}

13. Strings

Strings are sequences of characters, such as "Hello". Java does not have a built-in string type. Instead, the standard Java library contains a predefined class called, naturally enough, String. Each quoted string is an instance of the String class:

String e = ""; // an empty string

String greeting = "Hello";

13.1 Concatenation

Java, like most programming languages, allows you to use the + sign to join (concatenate) two strings together.

String expletive = "Expletive";

String PG13 = "deleted";

String message = expletive + PG13;

The above code makes the value of the string variable message "Expletivedeleted". (Note the lack of a space between the words: the + sign joins two strings together in the order received, exactly as they are given.)

When you concatenate a string with a value that is not a string, the latter is converted to a string. (As you will see in Chapter 5, every Java object can be converted to a string.) For example:

int age = 13;

String rating = "PG" + age;

sets rating to the string "PG13".

This feature is commonly used in output statements; for example,

System.out.println("The answer is " + answer);

is perfectly acceptable and will print what one would want (and with the correct spacing because of the space after the word is).

13.2 Substrings

You extract a substring from a larger string with the substring method of the String class. For example,

String greeting = "Hello";

String s = greeting.substring(0, 4);

creates a string consisting of the characters "Hell". Java counts the characters in strings in a peculiar fashion: the first character in a string has position 0, just as in C and C++. (In C, there was a technical reason for counting positions starting at 0, but that reason has long gone away, and only the nuisance remains.)

For example, the character 'H' has position 0 in the string "Hello", and the character 'o' has position 4. The second parameter of substring is the first position that you do not want to copy. In our case, we want to copy the characters in positions 0, 1, 2, and 3 (from position 0 to position 3 inclusive). As substring counts it, this means from position 0 inclusive to position 4 exclusive.
There is one advantage to the way substring works: it is easy to compute the length of the substring. The string s.substring(a, b) always has b - a characters. For example, the substring "Hell" has length 4 – 0 = 4.

13.3 String Editing

To find out the length of a string, use the length method. For example:

String greeting = "Hello";

int n = greeting.length(); // is 5.

Just as char denotes a Unicode character, String denotes a sequence of Unicode characters. It is possible to get at individual characters of a string. For example, s.charAt(n) returns the Unicode character at position n, where n is between 0 and s.length() – 1. For example,

char last = greeting.charAt(4); // fourth is 'o'

However, the String class gives no methods that let you change a character in an existing string. If you want to turn greeting into "Hell!", you cannot directly change the last position of greeting into a '!'. If you are a C programmer, this will make you feel pretty helpless. How are you going to modify the string? In Java, it is quite easy: take the substring that you want to keep, and then concatenate it with the characters that you want to replace.

greeting = greeting.substring(0, 4) + "!";

This changes the current value of the greeting variable to "Hell!".

Since you cannot change the individual characters in a Java string, the documentation refers to the objects of the String class as being immutable. Just as the number 3 is always 3, the string "Hello" will always contain the character sequence 'H', 'e', 'l', 'l', 'o'. You cannot change these values. You can, as you just saw however, change the contents of the string variable greeting and make it refer to a different string, just as you can make a numeric variable currently holding the value 3 hold the value 4.

Isn't that a lot less efficient? It would seem simpler to change the characters than to build up a whole new string from scratch. Well, yes and no. Indeed, it isn't efficient to generate a new string that holds the concatenation of "Hell" and "!". But immutable strings have one great advantage: The compiler can arrange that strings are shared.
To understand how this works, think of the various strings as sitting in a common pool. String variables then point to locations in the pool. If you copy a string variable, both the original and the copy share the same characters. Overall, the designers of Java decided that the efficiency of sharing outweighs the inefficiency of string editing by extracting substrings and concatenating.

Look at your own programs; we suspect that most of the time, you don't change strings—you just compare them. Of course, there are some cases in which direct manipulation of strings is more efficient. (One example is when assembling strings from individual characters that come from a file or the keyboard.) For these situations, Java provides a separate StringBuffer class that we describe in Chapter 12. If you are not concerned with the efficiency of string handling (which is not a bottleneck in many Java applications anyway), you can ignore StringBuffer and just use String.

13.4 Testing Strings for Equality

To test whether or not two strings are equal, use the equals method; the expression

s.equals(t)

returns true if the strings s and t are equal, false otherwise. Note that s and t can be string variables or string constants. For example,

"Hello".equals(command)

is perfectly legal. To test if two strings are identical except for the upper/lowercase letter distinction, use the equalsIgnoreCase method.

"Hello".equalsIgnoreCase("hello")

Do not use the == operator to test if two strings are equal! It only determines whether or not the strings are stored in the same location. Sure, if strings are in the same location, they must be equal. But it is entirely possible to store multiple copies of identical strings in different places.

String greeting = "Hello"; //initialize greeting to a string

if (greeting == "Hello") . . .

 // probably true

if (greeting.substring(0, 4) == "Hell") . . .

 // probably false

If the virtual machine would always arrange for equal strings to be shared, then you could use == for testing equality. But only string constants are shared, not strings that are the result of operations like + or substring. Therefore, never use == to compare strings or you will have a program with the worst kind of bug—an intermittent one that seems to occur randomly.

MTH 305 Handout 1: Java Syntax -- page 1 of 10

